
1 AD A063 968 F/G 12/1
OPTIMAL SEQUENTIAL AND NON—SEQUENTIAL PROCEDURES FOR LVALUATIP4G——ETC(tJ)
AUG 78 S GAL. C A MICCI4ELLI DAAG 2Q—?S—C—0024

UNCLASSIFIED MRC—TSR 1871 NL

‘4L~k ’ rwi _____ _________________ _____ _____ _____ ___________ ___________63 ~ a _________________________

fl
END

3 79

4;

Ii . dll



MRCjTechnicai ~~ mmary ~~~~~~~~~~~~~~~~~

~~~~~~• PROCEDURES FOR JY~LUATING k NCTX~~~~~J

(
]{Shmue]/ Gal _~ Charles A.[Micchelli]

Mathematics Research Center
University of Wisconsin—Madiso n Q
610 Walnut Street
Madison , Wisconsin 53106

• Au~ 787
C—

(Received June 7, 1978)

Approved for public release
Dist r ibutio n unlimited

Sponsored by

U.S. Ariiy Research Office
P • 0. Box 12211 

~ / ~Research Triangle Park
North Carolina 27709 Q ~ 

- -—.~~ ——— -— —- —--- ---.- -•~~-~~
--‘ —~~ 

- — --- — --



UNIVERSITY OF WISCONSIN - MADISON
MATHfl4ATICS RESEA1~~H CENTER

OPTIMAL SEQUENTIAL AND NON-SEQUENTIAL
PROCEDURES FOR EVALUATING A FUNCTIONAL

Shmuel Gal* and Charles A. Micchelli

Technical Summary Report #1871
August 1978

ABSTRACT

In this paper we identify a class of estimation problems in which

secuential estimation procedures do not yield a better rate of convergence

than ~xocedures in whio~ 
all the observations are preassigned in ~~~~~~~~~~~~~~~~~~

AMSU~vS) Subject Classification 
- 65D99, 65305

Key Words - Optimal estimation, seauential estimation, deterministic

estimation, random estimation procedure, optimal recovery.

Work Unit Number 6 - Spline Functions and Approximation Theory

*The work of S. Gal was supported by IBM T. 3. Watson Resea~ ch Center, Yorktown
Heights, New York.

Sponsored by the United States Army under Contract No. DAAG29-75-C-0024.

____________________ - -
~~~ -— -- -.



-

SIGNIFICANCE AND EXPLANATION

The complexity or work required for a numerical procedure is some-

times measured in terms of the number of function evaluations required

to yield an error of a given size. There are several effective algorithms

which are based on a sequential method of selecting function evaluations.

For instance, binary search for a root of a function or Fibonacci search

for the maximum of a unimodal function are examples of sequential

procedures.

In a sequential procedure the prior function values are used to pick

an optimum location to evaluate the function next . An alternative to a

sequential selection is to choose all the function values at once , how-

ever many have been decided to be used. Such an approach is sinn ler but

typically yields a slower rate of convergence. For instance, the error

for binary search is geometrically decreasing in the number of function

values while a preassigned strategy yields only an error decreasing at

a rate inversely proportional to the number of function values.

It is the purpose of this paper to identify a class of estimation

problems in which sequentiality will not yield a faster rate of conver-

gence than a deterministic choice. This class includes problems of

numerical quadrature and differentiation. Thus we demonstrate that the

complicated procedure of sequential estimation can be replaced by a much

simpler strategy of a deterministic choice for some important problems

of numerical calculation.

The responsibility for the wording and views expressed in this descriptive
s~minary lies with M~~, and not with the authors of this report .
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OPTIMAL SEQUENTIAL AND NON-SEQUENTIAL

P~~)CEDURES FOR EVALUATING A FUNCTIONAL

• a
Shmuel Gal and Charles A. Micchelli

1. Framework and Defintions.

In this paper we compare certain opt imal procedures for sampling a function f belong-

ing to some prescribed class for the purpose of estimating a functional Uf.  Our main ob-

jective is to identif y a large collection of examples in which sequential procedures are not

advantageous. Several unsettled questions whose solution would illuminate the Problem

studied here are outlined at the end of section 3.

We begin with a family of real valued functions defined on (0, 11, F — {f },  and a func-

tional Uf defined for all f ~ F. Assume that for any f € F we can make n observations

of f at points x1,... ,x and obtain the information f (x
1
) — y1,... , f ( x ) y .  The set

of uncertainty in Uf is

Q(x;f) {U~:~~ e F, c(x~) = f(x
i)

}, x (x
1
,...,x ) .

(For simplicity we shall consider the case of x~ c (0,13, but all the results hold for func-

tions defined on any bounded subset of Rm.) As a measure of the size of this set we take

(1) g(x;f) g(x
1
,... ,x;f )

— sup u1p - inf U~
P E W (x;f) peW (x;f)

where W(x~f) ~ € F, 
~
(xi) — 

~~
xi
)}, i.e., g is the length of the smallest interval con-S

tam ing Q(x~f). The function g(iqf) is defined for x E C
n 

(~C — (x
1,... ~

Xn) 0 < x~ ~~. i}

and f € F. We will compare three policies for choosing x1,... 
~
Xn~

To this end, let E be some prescribed subset of (0,11 from which we will sanole a

function f € F. In practice, we are typically constrained to sample from some fixed finite

subset of (0,11. Wa will frequently assume E has this property .

Now , let E E E x . • ~x E (n times) and consider the following three procedures.

a
The work of S. Gal was supported by IS~1 T. J. WatSon Research Center, Yorktown Heights,New York.

Sponsor.d by the United States Army under Contract No. DAAG29-75-C-0024.
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a. Deterministic.

The accuracy guaranteed is defined as

( 2) d~ — inf sup g(x ;f )
xcE fcFn

b. Random.

Random observations are preassigned by a probability distribution u on E.

The accuracy guaranteed here is

(3) r~ — inf sup f g(x;f)dp(x)
u fEF E

(We will only allow probability measures dp on E for which g(x :f)  is

p—integrable.)

c. Sequential.

A sequential search procedure is a set of n functions h
1
, h

2
1...,h where

h1 
— x

1 is a constant, x2 — h2(x1.
f(x1)),...,xi+i — hi+i(x1i f(xi).....xj.

f(xj))s —

...,etc. This procedure produces an h(x:f) c E ,  h — (h1I
~~•~

Ihn)~ 
The totality

of sequential procedures will be denoted by S~ .

The accuracy guaranteed by a sequential procedure is given by

(4) s — inf sup g(h(x;f),f)n hcS f€F
n

Remark 1. Obviously r~ < d~ and a 
~ 

d for any subset E of (0,11 . The following

example is a simple instance in which s <€ rn n

Let E — (0.11 , F — (f:f(O) — —1 , f(l) — +1, f (a) > 0 ~ f(b)  > 0 for a < b < 1} and

Uf m t  a such that f(s) > 0 (i.e. Uf is the “root” of f). If we let x0 — 0 , x~4 1 — 1

U then g ( x i f )  — — X
j..1 where i is the smallest index such that — f ( x ~ ) > 0. Hence

inf sup q(x ,f) — m t  sup (x~ - — l/n+l. To estimate r we define k5 c F by
a f a i

k5(t)  — — 1, 0 < t < z,  and +1 for a < t < 1. Then

I 
_ _ _ _ _ _  
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— inf sup f g(x:f)du(x)
u f En

1

t ~ mnf J 5 g(x;ii )du(x dz
u O S

n+l
— m t  5 ~ 5 (x~ — xi 1)dzdu(x)U S i—l

nil
— m t  5 ~~ 

(x~ = xi_1)
2du(x) > 3./nil .

~i E i 1n

On the other hand , the bisection (sequential) nrocedure yields an accuracy of (1/2)
fl and in

fact it is easily seen that s~ — (1/2)n~

In contrast to this situation we will show below that there is a wide class of problems

for whmch r < S .n —  n

2. Linear Functionals Defined On Convex Sets.

In this section we assume that

(5) F is a convex family

and

(6) U is a linear functional

Lemaa 1. Suppose (5) and (6) hold . Then g(x ;f)  is a concave function of f E F.

Proof. Let f 1, f 2 € F. Then for any € > 0 there exist f~ f~ € F with

f~(x~) — f
m
(x
j
) = f.(x.), i = 1, 2, j  — l ,....n and

(7) ~(x;f~) < u(f~) — U(~~ ) + c

Thus by (7) and the linearity of U

g(x;0f1 + ( l —O ) f 2) > u (0 f 1 + ( l— O) f 2) — U (0 f 1 + ( l_ O) .~2)

— efu (f1) — u(f1
) )  + ( l — O) (u(f 2) — 0(f2))

> Og(x;f
1
) + (l—O)g(x;f 2

) — €

Letting c 0 proves the leimna .

—3—  
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Theorem 1. If (5) and (6) hold and E is a finite subset of 10.1) then

(8) r — sup mm 5 g(x;f)du(x) . (see (3))
fEF U

This theorem is a consequence of the following version of Ky Fan ’s minimax theorem (2),

which we state below.

Theorem A. Let S, T be sets with S a coinoact Hausdorff space. Let • he a real-valued

function defined on S x T which is continuous and convex with respect to a, and concave in

t. Then ther,~ exists an s € S such that

mm sup $(s,t) — sup +(s,t) = sup mm $(s,t)
s€S t€T t€T tET s€S

For the proof of Theorem 1 we define

— 5 g(x;f)du(x)
Sn

where u ranges over all probability measures on E .  Given the usual topology on (p1

(n-dimensional simplex), the theorem follows from Lenuna 1 and the definition of r~ .

This result leads us to

Corollary 1. If (5) and (6) are satisfied and S is a finite subset of (0,13 then

• dn > 5,~ > Z~ (Sequentiality does not helpi).

Proof. Given € > 0 there is an f € F with

5 g ( x ; f ) d p ( x )  > r -

En

for all probability measure u. In particular, g(x;f) ‘ rn 
- € for all x € En~ 

Thus , for

any sequential search procedure h — h(x; f) we have g(h(x;f) :f) > Zn 
- ~ Consequently,

s~ — m t  sup g(h(x,f);f) > r —

hcS ~~~ 
n

Remark 2. A randomized sequential procedure combines, in an obvious way , the features of a

random and a sequential search . Using the same argument , it follows directly that even ran-

domized sequential procedures do not produce better accuracy than the preassigned randomized

procedures considered in this paper.

_ _ _ _ _ _  ~~~~~~~~~~~~~~~~~~~~ 
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We show below with an example that Theorem 1 is not valid in general for infinite subsets

E of (0,11 .

Example 1. Let S = (0,3.1, F {f; there is a a, 0 < a < 1 such that f is strictly in-

creasing in (0,zJ and f(t) — f(s), t c (z,ll and It(t) I < 1, t € (0,131 and

Ut — ha f(t). Note that P is convex and U is hinear,but E is not a finite set. Now,
t+l

_

for n — 2 we have inf g(x1,x2
,f) = 0 and thus

x
1
,x2

sup inf 5 g(x;f)dp (x) — 0
f U

However, for any p there exists a q, 0 < q < 1 such that p(x
1 

and x2 are not in (q,l))

> 1/2. Hence for € small and

(—l + t€ , O < t < q
*f (t) —

—l + q€, q < t < 1

it follows that if one of the x1
1 s is not in (c,1) then g(xj,x2

;f*) > 2 — € .  Thus

fg (x;f )d i i > 1 — € / 2  and

- inf sup 5 g(x,f)du ‘ 1 — €/2 -
U f

The fact that the functions in F need not be continuous at one may seem artificial ,

nevertheless , it is possible to construct other examples of this type in which all the func-

tions in F are continuous.

Remark 3. If we allow nature (our opponent) to choose an f from some fixed finite subset

F’ of F by means of a probability distribution dv then the accuracy we can obtain with

our best choice of dp is

mm max 5 5 g(x,f)dp (x)dv(f)
U V E F ’

By th. standard version of the minimax theorem this number equals

max mm 5 5 g(xi f)dp (x)dv(f)
V p s e ”

* a
nd optimal strategies dii (a), dv Cx) exist even if (5) or (6) is not satisfied. In this

case even though nature will choose the data according to the distribution dv we know by

—5—
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our previous example that a sequential procedure can guarantee a much smaller accuracy. Why

is this so? The explanation to this phenomenon which is contained in Corollary 1 is as

follows: When (5) and (6) are in force then nature has a universal worst function f

• which can be used against any sequential procedure for selecting x — (X
1
, . . . ,X ). Thus

we cannot hope to “learn” about f a P by using sequentiality. On the other hand,

if nature has to choose among a set of functions (randomized) then we can really “learn”

something about the function which was chosen. This was the case in the method of bisection.

Remark 4. Let dp be the optimal probability distribution for choosing x — (x 1
...x ) and

suppose there is an optimal strategy of nature f among all f € F.

Then

r — in! g(x, f) 5 g(x,f*)dii
*(x)

n xcE En n

a * *
and thus the support of p is a subset of all x c En 

which satisfy g(x;f ) — inf g(x,f ) .

This condition may help to find the optimal search strategy, i.e., our plan against the data

corresponding to the worst function. -

Below we offer some further examples which show that certain extensions of Theorem 1 are

not possible.

Example 2 • Here we define a convex set F and a nonlinear convex functional U and demon-

strate that Theorem 1 is not valid for this case.

Let S — (0,11 ,

F — {f :f concave, If’ x I  < 1, x € 10.11)

and

Of — sup f(x)
O<x< 1

U is obviously a convex functional and F a convex set.

For 0 < a ~ 1 define a F as ç(x) — x for 0 
~ 
x a and ç(x) = 2z — x for

a < x < 1. Thus for any n observations a1,... .xn 
(which we assume for convenience are

ordered 0 x0 < x
1 

< •~~ • € ~~ < x~~1 
— 1), if X

j ~~. a < xj+l then

g(x;ç) = a — max( Pg(xj
)~ ~5(Xj~1

)) — min(Z — X
j~ X

j~~1 
— a)

Therefore



_____ — - - - - — - — - - - --~~~~~ -~~~~~~~~~~~~ .-~~~-- - - --- . - - -

~~~~

-——-

~~~

- .-

~

-—.--— - -- — -  — - -- -—- - —
~

.-.—

— . ( C ,’ ’ ,- ’- - . , _ . - — J , :  •.M~~*~~ Ci- - - - -~~~~~~~-:~~~~~~ - - -- —.,=~— . — . — -—-. - — — —

1f g(x 1 , . . .  , x ; )dz
0

x+xx1 1 2  x
2 1

— 5 (x
1—a)dz + j 2 ( )d  + 5 (x

a
_a)dz 4 ..  .4 5 (z—x~ )dz

0 x x + x  x1 1 2 n
2

2 2 2 2a (x —x ) (a =x ) (1—a2 1  
+ 

n n—l n
2 4 4 + 2

and it follows that r , d >
n n— 4 n

On the other hand, since all f a F are unimodal we can achieve with a Fibonacci

search an accuracy of about an, a ~ .62 (the Golden section) for the location of the maximum.

Moreover , since I f ’ I  ~ 1 we may then locate the value of the maximum Uf, within as

well. Thus s < (~62)n 
~

< Zn d .  A completely analogous examole can be constructed with a

concave functional.

Example 3. In this example E — (0,1), Of — f~~(x)dx and F = {f :O < z < 1), f = character—
0 -

istic function of Iz,1). Here U is a linear functional and F is a nonconvex set.

For a a (xj. xj+i)~ 
we have g(x ;f) = a

41 
— and so

1 nil

5 g(x
1,.  .. ,x 

~~~~~ 
— 

~~~~~ 

(x
i 

— xi..i)
2 

> —‘iT

Thus r > h/n+l. But, if we use the bisection sequential procedure then we may locate a

with error (1/2)n and so the interval of uncertainty about Ut is s~ — (~~~~2)
fl <<

Examples 2 and 3 remain valid if we take S to be a finite (but large) set of points

(e.g., E — ~~~, i = 0, l,...,m ) .

3. Centered Sets.

We will say a set F is centered (about f0) if there exists an f E F such that

whenever f a F then 2f — f € F.

Le~~a 2. Suppose (5) and (6) hold and P is centered about f,~. Then for all

a — (a ,...,x ) a S and f a F1 n n g(x : f)  < g(x :f 0)

—7—

- —~~~ — — — — --  I ~~~~

- - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~ .~~~~ .~~~~~ — ,-~~~~-~~~ - ~~~~~~~~~~~~~~~ —- ~~~~~~~~~ . - -



— -
~
-

~~ 
—-

Proof. Since f a F if and only if 2
~c 

— a F

W(2f — f;) = 2f — W ( f ;x )  . (see (1))

Hence we see that g(x;2f — f) — g(x;f) for all f a F. Now, it is an easy matter, in view

of Leiruna 1, to prove the leiruna

- g(x;f) = -
~~ (g(x;f) + g(x;2f~ — f))

< g(x ~ f )

Theorem 2. If there exists an f a F such that for all x a E and f € Fc n

(9) g(x ,f ) < g(x,f)

then for all n

(10) d = r  = s
fl n n

and

(11) f is the optimal strategy of nature independently of n

Proof: Let V = inf g(x,f ) .  It is obvious that by using f~ ’ nature can keep the payoff
xaE

n

to be at least V against any randomized or sequential procedure. On the other hand for any

c > 0 it is possible to find an x which satisfies g(x ; f~) < v + a, so that any f € F

f) < g(x~ ; 
~~ 

< v + c.

Thus, the deterministic search procedure x keeps the payoff below v + C. It follows

that f(~ is optimal and x~ is c—optimal.

Remark 5. Note that for Theorem 2 to hold, it is sufficient that condition (9) is satisfied

and no other assumptions (such as linearity of u . convexity of F or finiteness of El are

necessary.

The proof of Theorem 2 actually presents a method for finding the optimal search proce-

dure. The rule in this case is simple, we just have to find a set of points x1,.. .x

which minimizes the interval of uncertainty for the case in which nature usan f
~
.

— 8— 
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We also note that a related result under a stronger hymothesis apoears in Bakhvalov (1).

• Needless to say there are many interesting examples to which Theorem 2 apPlies. Selow

we mention one from the theory of optimal auadrature.

Example 4. Let F — {f:f is absolutely continuous and I f ( Z ) — f(y) I ~~. MIz - yl, o < z, y < 1)
1

and Of = 5 f(t)dt. Then the assumptions of Theorem 2 hold (since 0 is the center of F)
0 * *and so the observation points a

1
,... ,x are deterministic and preassigned and have to satis-

fy 

* *g(x1 ,...x :0) = mm g(x1 ,...,x :0)n
— l  n—

It easily follows that 
-

g(x,O) = 2M (x~ + 
~~ 

(x .~~1 
— xi

) 2 
+ (1 - a )2)

i—i

. 1
*

This function has a unique ininimwn for x. = — i = l,...,n and we conclude that

r = d  = s  — M/2nn n n
1

In this example we may replace Of by any positive linear functional Of = 5 f(t)dy (t)
0

and F by {f:f abs. cont. If’(t)I < b(t), a.e.}. Again Zn = d
n = 9

n but in general the

optimal x~ are not ecually spaced and difficult to find explicitly. They correspond to the

minimum of

l xi
g (x ;O)  — 2[5 (b (x 1) — b ( t ) ) d y ( t )  + 

~ (I 
(b (t) _b (x m ) ) d Y ( t )

• 0 i—l\x~

a.
41 1

+ (b(x~~1
) - b(t))dy(t)~ + 

~~~ 

(b(t)_b (x~))di(t)J

where 
-

t
b(t) = 5 b(t)dt

0

and satisfies

-9—
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b ( Z m )  — b(x
~
) = 4 ( b ( X m ~~~ 1

) — b(x m ) )

Our last example has the property that (5) and (6) hold and r < d .

In our next example we observe that the conclusion of Theorem 2 may remain valid in the

absence of a center for F. This example raises the issue of the extent to which the require-

ment in Theorem 2 that F have a center can be weakened.
1

Example 5. Let F {f:f increasing, 0 < f(x) < 1, for 0 < x < 1) and Of — 5 f (x)dx.
0

Then (5) and (6) hold, however, F does not have a center. The following remarks are a for-

mal proof of the latter statement. Assume that a center exists. Since 0 a F then

2
~c 

- 0 = 2f a F so that f < 1/2. But 1 a F which implies f > 1/2. Thus f~ 1/2

which is impossible because then f(x) — x € F implies 2f~
(x) — f(x) — 1 — x is increasing.

Nevertheless we will show that f (x ) = a is a universally worst function and d — r~ .

It is easily verified that for any x = (x 1 , . . .  ,x )  0 < 
~~~~~~~ 

X
n 

< 1 and f (x) — x

* 2 2 2 2 1
g(x;f ) = x1 + (x 2—x 1

) +...+ (x~_x~ .~1
) + (l-x ~ ) >

~~~j

that is, nature can guarantee a value of —
~j 

by choosing f .  On the other hand, if we use

x =—  then for any f a F

~~~~ ~~~ : ~~1 ~~~~~~~~~~~~~ 

+. • .+ ~~~~~~ 

~ 
- f(~~~)]

n+l n+l

1
n+l

Thus the searcher can guarantee a value of —
~j 

by a deterministic strategy so that

d — r — s . In addition, we know f~ is a universally worst function for all n. This cx—
n n n

ample has been mentioned by 1(iefer in (3).

Our last example has the property that (5) and (6) hold and rn 
< dn• •

—10=
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— Example 6. For any interval I C 10,1) we let f1 be its characteristic function. Let

be a partition of (0,1), ~ 
~ 

1
k 

= •~ j ~ k, U 14 — (0,1] with 1~ c...<I and
j

define

F {~~~ y . f1 :y. > o~ 
~ 

v~ —

(step functions). For U we choose an arbitrary linear functional given by

n
Of — ~ y~a~

j—l

and as usual E (0,11. we define a mapping i:10,l) -
~ {l,...,zn} by the condition that

~ 
1i(t) and set 1(x) = {i(x1),...,i(x)}, a = 

l’ ” ~n~~ 
Then it is easily seen that

g(x;f) — (1 — ~ y.)( max a4 - m m  a4)
j€I (x) ~ j~I(x) 

‘ j~I(x) 
‘

— ~ y. ( max a — nin a.)

• j~ I(x) ~ j~I(x) ~ j~I(x) ~

Hence for a
j — j’ 

j = 1,... ,m we have d1 = m - 2 while for the randomized procedure de-

fined by

- • (nm-l
2m -2m+2

Pr(x
1 a I~

) —

m—2 
, l < j < m

m —2m+2

it follows that for all f a F

5 g(x1;f)dp(x1) — 2 ((l—y 1) + 
~~~ m

) ) ( 5 1_ 2 )

0 m -2nm+2

+ 

m~l 

2 
— (1—y ~) (rn—i) — 

m 2m+1 (m—2) < m - 2 .
j=2 m -2nm+2 in -2m+ 2

Thu, r
1 

< d
1.

All our results have in effect compared d ,  r~ . s for a fixed n. It would be useful

to determine under conditions (5) and (6) whether these quantities can be asymptotically
d

different, in other words when is TTh~ ~~ <

—11—

____  _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  - - - - - I 

- - - - - -.._~~~~ :.._— ‘ - ~~~-~~ ~~~~~~~~~~~~~~



_ _ _ _ _ _ _ _ _ _  ~~~ - -- ---- -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —- - - - -
~~~~~~~ - -~~-~~~~~~

-
~~~~

—---

The ideas we have presented have wider applicability. In the next section we will

co~~snt on the optimal estimation of operators from sampling in the presense of noise.

4. Extensions.

In applications it is frequently unrealistic to assume that the data

is known exactly. Function values are usually only inaccurately determined as a result of

either experimental or computational error. We measure these errors with a norm I~•II on

R~ and say that f(x
i
) — 

~~~~ 
+ e~ where He ll c 1 (normalized), e = (e

1
,...,e). In this

case our uncertainty in U is the set

{u~ .~~ a F, 
~
(x
~
) = f ( x i) + ej~ h e l l  ~ 

1}

and the corresponding g is

g (x;f) — sup Up — inf UP

~~H (x ; f)  ~~H (x: f)

where

• 
I4 (x;f) — a F, P(xi

) — f(x~) + e1
, h ell 

~~. ~~}

Continuing with this analogy we introduce d
e, re, 5e, as in Section 1, and it is easily

seen that all the results of Section 2 remain valid for inaccurate data.

Our discussion in Section 2 and 3 also lends itself to the estimation of ocerators be-

tween linear spaces. Thus in this case U is an arbitrary mapping from a linear space X

into another linear space S • Our class F is now some subset K of X and the inforsAtion

about f which may be used to estimate Ut is denoted by If. Earlier If was a s~~~~1e of

f unction values ( f ( x 1) ,...,f ( x ) ) .  Now we allow I to be any linear mapping frcei X

into R~ , If = (I1f,.. .,I f) , Ii :X -, R i.e. n linear observations of f. P.s before we will

measure the error in the observation If with a norm f l • J I  on R~ and thus the set of

• uncertainty is

Q(f;I) — {U~ IIIP — If + e, De ll < 1, ~ € F)

In this case , Q is not an interval but rather a (quite arbitrary) subset of Z. Therefore

f we require some measure of the size Q. For this purpose , we assume that Z is a normned

[ linear space and recall that the Chebyshev radius of a set T C S is defined as

~i2~ 

- -
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r(T) — inf sup lIx—y hl .
x Z ya T

The radius of a 8et serves as an effective measure of its size and we let

g(I;f) — g(I
~
,... ‘‘n e

= r(Q(f;I))

This definition differs by a factor of 1/2 from the one we used earlier in (1) when Z — P.

An attractive feature of this way of measuring the size of Q is that it corresponds

to the best way to “fill in” the diagram

U
x •—

~ z

I

,

with a mapping A given only that IP — If + e, lieU < 1 and f a K. These ideas are dis-

cussed in (43 (the proofs of Lenuna 1 and 2 are based on remarks in (4)).

We quote the following result from (4; p 2).

Theorem B. If U is a linear operator from X to Z and K is a convex set centered about

the origin 0 a X then

g(Imf) < 2g(I;6)

With this result we may proceed, as in Section 2, to show that a sequential search can-

not do better than 1/2 a deterministic one. A sequential search in this context means that

some set L of linear functionals on X is prescribed (in section 2 this was the set of

point evaluations). Then a sequential method based on n observations frost L is deter-

mined by a function h - (h
1,. . . ,h), h~:X x 

~~~~~~~~~ • L where h
1
11 — 1l The function

i—i

selects the information

h(I)f = (1
1
f, h2 (f , 1

1
f),...,h (f , 1

1
f,...,1

1
f))

— (1
1f, 12f,. . . ,!f)

• and a sequential search can guarantee an error of

5n — 

~~~~ 
— inf sup g(h(I)f;f) -

•

h faF

~~~~~~~~~~~~~~~~~~~~~~~~ :~1 

-13- 

-



— -- .- — .---- -- - -~~~~
.--

~~ -——•— -- -~-• - -. — --—
~~

- ------

I’

while a deterministic approach yields

d~ — ci (LI — inf sup g(1
1
,... ,I ;f)

I~€L f€ F n

Theorem 3. Let the hypothesis of Theorem B be satisfied. Then

a s  a d
2 n —  n —  n

Proof. The right hand inequality is obvious. To prove the remaining inequality we let h

be any seauential procedure. For a > 0, there exists I — ~~~~~~~~~~~~ 
I .  a L such that

* *inf g(1
1,.. . , t m e ) + a > g(11,... ,I ; 8 )

n n

(0 = center of K)

Thus frost Theorem B

sup g(h(If);f)
• faK

> q(h(IO);0) > g(4,...,I~ ;0) — €

• i 1 * *• sup g(11
,.. . ,I ;f) — • -

faF

> i d - €
— 2  n

Hence , letting € O~ we see that any sequential procedure cannot achieve an accuracy less

than d . This proves the theorem.
2 n  • -

When K is a unit ball given by a filbert space semi—norm and the data I is known

exactly then (when no further assumptions on Y, 5) the factor 2 in Theorem B can be removed

(5; p. 10). For inaccurate data a similar result holds when I can Z are Hu bert spaces

(41. In each of these cases d — an n

It is interesting to note that when the set L is chosen to be the set of all contin—

uoug linear functionals then dn 
corresponds to the Gel’ f and n—width of the set

UK — {Uf :faK } , since

~~~~~~~~~~~~~~~~~~~~~~~~ TJ~ ~~
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d = inf g(I
1,...,

I ;0)

‘jay

— . 
— inf r(Q(1

1
,... ,I ;O))

‘jay

— inf
~ sun liUfli

• I~aY fa K
I.f— O
1

= inf o sup hif il
I.aI faux
1 

I~f—0

the Gel’fand n-width of UK, (61.

When K = {x: ll x ll < 1) is a filbert space unit ball and U is a bounded linear operator

the Gel’fand numbers of UK are known. In particular, if U is a compact operator and

U UP. = ~~~~~~~ (P
j~
Pk
) = 6

jk

Then the Gel’fand n—width equals and (P
lt X)

~~•~
•s(Pn~ 

x) isa best choice of dc—

sients in X .

Corollary 2. Let U be a compact linear operator from a Hi].bert space X into another

filbert space Z. Then an optimal sequential procedure for estimating ux given Hall < 1

and n linear observations of x has error A 1”2 and uses the deterministic choicen+l

(P1. X)
~~• • • s t P n $ x).

—15—
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